2016 James S. Rickards Fall Invitational

For all questions, answer choice (E) NOTA means that none of the given answers is correct. Good Luck!

1. Evaluate:

$$\lim_{x \to \frac{\pi}{4}} \frac{\cos^2(x) - \sin^2(x)}{\cos^4(x) - \sin^4(x)}$$

- (A) 0 (B) 1 (C) 2 (D) Does Not Exist (E) NOTA
- 2. If $f(x) = (x-1)^3 \cdot (2x-1)^4$, what is f'(1)?
 - (A) 0 (B) 1 (C) 4 (D) 12 (E) NOTA

3. If f'(x) = (x - a)(x - b), where does f(x) have a local maximum?

- (A) x = a (B) x = b (C) x = a and x = b (D) Need More Info. (E) NOTA
- 4. Which of the following functions are continuous on the interval $(-\infty, \infty)$, but not differentiable on that entire interval?
 - I. f(x) = |x 3| + 6 II. $g(x) = \sqrt[3]{x} + 3$ III. $h(x) = \sin(6x 3)$ IV. $j(x) = e^{ex}$ (A) I (B) I, II (C) I, II, IV (D) I, III, IV (E) NOTA
- 5. Evaluate:

$$\lim_{n \to \infty} \left(1 + \frac{5}{n} \right)^{2n}$$

- (A) e (B) e^2 (C) e^5 (D) e^{10} (E) NOTA
- 6. What value(s) satisfy the Mean Value Theorem for Derivatives for the function $f(x) = 2x^2 x$ over the interval [2, 4]?
 - (A) -3 (B) -0.5 (C) 3 (D) -3,3 (E) NOTA

7. What theorem is being depicted below? "If a real-valued function f is continuous on a proper closed interval [a, b], differentiable on the open interval (a, b), and f(a) = f(b), then there exists at least one value c in the open interval (a, b) such that f'(c) = 0."

(A) Mean Value Theorem for Derivatives
(B) Mean Value Theorem for Integrals
(C) Rolle's Theorem
(D) Fundamental Theorem of Calculus
(E) NOTA

8. Approximate $\int_0^4 x^2 dx$ using a left-hand Riemann sum with four equal subdivisions. (A) 14 (B) 15 (C) 22 (D) 30 (E) NOTA

9. Approximate $\sqrt{0.99}$ to the thousand the place using the linear approximation for $f(x) = \sqrt{1-x}$ at x = 0.

(A) 0.990 (B) 0.995 (C) 1.000 (D) 1.005 (E) NOTA

Calculus Individual

10. Find the volume of the solid generated when the region bounded by $f(x) = -\left(x - \frac{5}{2}\right)^2 + \frac{9}{4}$ and the x-axis is revolved $\frac{3\pi}{2}$ radians about the x-axis.

(A)
$$\frac{81\pi}{34}$$
 (B) $\frac{166\pi}{27}$ (C) $\frac{221\pi}{28}$ (D) $\frac{243\pi}{40}$ (E) NOTA

11. Find the average rate of change of the function $f(x) = 3x^3 + 2x^2 + x + 2016$ on the interval [3,5].

(A) 328 (B) 164 (C) 246 (D) 94 (E) NOTA

12. Find the area bounded by the curves x - 4y = -6 and $x = (y - 2)^2 + 5$.

(A)
$$\frac{1}{3}$$
 (B) $\frac{4}{3}$ (C) $\frac{8}{3}$ (D) $\frac{100}{3}$ (E) NOTA

13. If $f(x) = \sin(2x)$, what is $f^{(2016)}(x)$?

(A)
$$-2^{2016}\cos(2x)$$
 (B) $2^{2016}\cos(2x)$ (C) $-2^{2016}\sin(2x)$ (D) $2^{2016}\sin(2x)$ (E) NOTA

- 14. Meit is rolling! His path is given by $f(x) = x^3 3x^2 + x 2$. When is he accelerating? (A) x < 1(B) x > 1(C) $0 < x < \frac{3 - \sqrt{6}}{3}$ and $1 < x < \frac{3 + \sqrt{6}}{3}$ (D) $\frac{3 - \sqrt{6}}{3} < x < 1$ and $x > \frac{3 + \sqrt{6}}{3}$ (E) NOTA
- 15. Aditya has 60 m^2 of cardboard and wants to make a regular right hexagonal prism. What should the side length of the base be, in meters, if Aditya wants to maximize the volume of the prism?

(A)
$$\frac{4\sqrt{15}}{9}$$
 (B) $\frac{20\sqrt{3}}{9}$ (C) $\frac{2\sqrt[4]{75}}{3}$ (D) $\frac{4\sqrt[4]{60}}{3}$ (E) NOTA

16. Find the y-coordinate of the point on $y = \sqrt{x}$ that is closest to (2, 1).

(A) -1 (B) 0 (C)
$$\frac{1+\sqrt{3}}{2}$$
 (D) $\frac{2+\sqrt{3}}{2}$ (E) NOTA

17. Kyle is at the beach and decides to make a sandcastle. He pulls out a bucket that is a perfect circular frustum with a height of 5 m and radii of 4 m and 14 m. He puts the empty bucket down so that the smaller circular base is on the bottom and uniformly pours sand in at a rate of $3 \text{ m}^3/\text{s}$. What is the rate of change in m^3/s of the upper radius of the sand when the height of the sand is 3 m^2 .

(A)
$$\frac{3}{50\pi}$$
 (B) $\frac{\sqrt{3\pi}}{2\pi}$ (C) $\frac{16}{43\pi}$ (D) $\frac{9\sqrt{\pi}}{28\pi}$ (E) NOTA

18. Let $A = \int_0^1 f(2x) dx$ and $B = \int_0^2 f(x) dx$, where f(x) is integrable and always positive. Compare A and B.

(A)
$$A < B$$
 (B) $A = B$ (C) $A > B$ (D) Depends on $f(x)$ (E) NOTA

19. Evaluate:

$$\int_{2}^{4} \frac{3}{x^2 - 1} \, dx$$

(A)
$$\frac{3}{2}\ln\left(\frac{9}{5}\right)$$
 (B) $\frac{3}{2}\ln\left(\frac{1}{5}\right)$ (C) $\frac{2}{3}\ln\left(\frac{6}{5}\right)$ (D) $\frac{1}{3}\ln\left(\frac{1}{5}\right)$ (E) NOTA

20. What is the slope of the tangent line to the graph of $3x^3y + 2y^2 = 6xy - x^2$ at the point (1, 1)?

- (A) -5 (B) 0 (C) 2 (D) 4 (E) NOTA
- 21. Sam the dog likes apples so Mr. Kiser finds an apple with cross-sections given by the polar curve $r(\theta) = 4 8\cos(\theta)$. What is the area of the inner-loop of $r(\theta)$?

(A)
$$\pi + \frac{3\sqrt{3}}{2}$$
 (B) $16\pi - 24\sqrt{3}$ (C) $32\pi - 48\sqrt{3}$ (D) $32\pi + 48\sqrt{3}$ (E) NOTA

22. Evaluate:

$$\lim_{n \to \infty} \frac{\sqrt{n^6 + 4n^5 + 4n^4 + 8n^3 + 3n^2 + n + 7}}{n^3}$$

23. Let x_1, x_2, \ldots be an infinite sequence of positive real numbers such that $\sum_{k=1}^{\infty} x_k$ converges. Does $\sum_{k=1}^{\infty} (e^{x_k} - 1)$ converge? (Hint: It follows from convergence that $x_k \to 0$.)

(A) Yes, it must (B) No, it can not (C) Depends on the x_i (D) Need More Info. (E) NOTA

24. Evaluate:

$$\lim_{t \to 0} \frac{\cos^2\left(\frac{\pi}{3} + 2t\right) + \sin^2\left(\frac{\pi}{3} - 2t\right) - 1}{2t}$$
(A) $-\infty$ (B) $-\frac{\sqrt{3}}{2}$ (C) $\frac{\sqrt{3}}{2}$ (D) ∞ (E) NOTA

25. Find the length of the curve of the function $f(x) = \frac{2}{3}(x^2 - 1)^{\frac{3}{2}}$ from x = 1 to x = 3.

(A)
$$\frac{19}{3}$$
 (B) $\frac{28}{3}$ (C) $\frac{46}{3}$ (D) $\frac{58}{3}$ (E) NOTA

26. Evaluate: $\int_0^\infty x e^{-x^2} dx.$

(A) $-\frac{1}{2}$ (B) 0 (C) $\frac{1}{2}$ (D) ∞ (E) NOTA

2016 James S. Rickards Fall Invitational

- 27. Suppose that the vertical and horizontal position functions of a moving particle can be represented by $y(t) = 3\sin(2t) + 5$ and $x(t) = 4\cos(3t) + 8t$, respectively. Find the ratio of the horizontal speed of the particle to the vertical speed of the particle at $t = \frac{\pi}{6}$.
 - (A) $-\frac{3}{4}$ (B) $\frac{4}{3}$ (C) $\frac{3}{4}$ (D) Need More Info. (E) NOTA

28. Evaluate:

$$\sum_{n=1}^{\infty} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^{2n}\left(x\right) dx$$

- (A) $\frac{\pi}{2} 1$ (B) $\frac{\pi}{4} 2$ (C) $1 \frac{\pi}{4}$ (D) $1 + \frac{\pi}{2}$ (E) NOTA
- 29. How many of the following statements regarding sequences and series are true?
 - I. The coefficient of every even powered term of the Taylor series representation of an even function is 0.
 - II. A sequence is a list while a series is a numerical value.
 - III. The sum of the n roots of unity for $z^n = 1$ for all positive integers n is 0.
 - IV. The interval of convergence for $\sum_{n=1}^{\infty} \frac{x^n}{3^{2n+1}}$ is [-9, -9].
 - (A) 1 (B) 2 (C) 3 (D) 4 (E) NOTA

30. Kevin likes number theory. Thanks to Euler, he knows that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Given that $\sum_{n=1}^{\infty} \frac{1}{2^n \cdot n^2}$ can be expressed as $\frac{A\pi^2 + B(\ln 2)^2}{C}$, such that A, B, and C are relatively prime, what is the value of A + B + C?

(A) 7 (B) 13 (C) 19 (D) 21 (E) NOTA